On the diagonal and Hadamard grades of hypergeometric functions
Joe Kramer-Miller (Lehigh)
Abstract: Diagonals of multivariate rational functions are an important class of functions arising in number theory, algebraic geometry, combinatorics, and physics. For instance, many hypergeometric functions are diagonals as well as the generating function for Apery's sequence. A natural question is to determine the diagonal grade of a function, i.e., the minimum number of variables one needs to express a given function as a diagonal. The diagonal grade gives the ring of diagonals a filtration. In this talk we study the notion of diagonal grade and the related notion of Hadamard grade (writing functions as the Hadamard product of algebraic functions), resolving questions of Allouche-Mendes France, Melczer, and proving half of a conjecture recently posed by a group of physicists. This work is joint with Andrew Harder.
number theory
Audience: researchers in the topic
Comments: pre-talk at 3pm
Series comments: Most talks are preceded by a pre-talk for graduate students and postdocs. The pre-talks start 40 minutes prior to the posted time (usually at 1:20pm Pacific) and last about 30 minutes.
| Organizers: | Kiran Kedlaya*, Alina Bucur, Aaron Pollack, Cristian Popescu, Claus Sorensen |
| *contact for this listing |
